Rachael Laidlaw (Ask-JGI Data Science Support 2023-24)
I first came into contact with the Jean Golding Institute last year at The Alan Turing Institute’s annual AI UK conference in London, and then again in the early stages of the DataFace project in collaboration with Cheltenham Science Festival. This meant that before I officially joined the team back in October, I already knew what a lovely group of people I’d be getting involved with! Having nice colleagues, however, was not my only motivation for applying to be an Ask-JGI student. On top of that, I’d decided that whilst starting out in my ecological computer-vision PhD niche, I didn’t want to forget all of the statistical skills that I’d developed back in my MSc degree. Plus, it sounded really fun to keep myself on my toes by exercising my mind tackling a variety of data-oriented requests from across the university’s many departments.
During the course of my academic life, I’ve taken the plunge of changing disciplines twice, moving from pure mathematics to applied statistics and then again to computer science, and I liked the idea of supporting others to potentially do the same thing as they looked to enhance their work by delving into data. Through Ask-JGI, I kept my weeks interesting by having something other than my own research to sometimes switch my focus to, and it felt very fulfilling to be able to offer useful technical advice to those who were in the same position that I myself had been in not so long ago too! I therefore got stuck in with anything and everything, from training CNNs for rainfall forecasting or performing statistical tests to compare the antibiotic resistance of different bacteria, to modelling the outcomes of university spinouts or advising on the ethical considerations and potential bias present when designing and deploying a questionnaire-based study. And, of course, by exposing myself to these problems (alongside additional outreach initiatives and showcase events), I also learned a lot along the way, both from my own exploration and from the rest of the team’s insights.
One especially exciting query revolved around automating the process of identifying from images which particular underground printing presses had been used to produce various historical political pamphlets, based on imperfections in the script. This piqued my interest immediately as it drew parallels with my PhD project, highlighting the copious amount of uses of computer vision and how it can save us time by speeding up traditionally manual processes: from the monitoring of animal biodiversity to carrying out detective work on old written records.
All in all, this year has broadened my horizons by giving me great consultancy-style work experience through the opportunity to share my expertise and help a wide range of researchers. I would absolutely encourage other curious PhD students to apply and see what they can both give to and gain from the role!