Working towards more universal skin cancer identification with AI 

JGI Seed Corn Funding Project Blog 2023/24: James Pope

9 examples of malignant/benign cancer marks on different skin types
Images from the International Skin Imaging Collaboration (https://www.isic-archive.com/

Introduction

Open-source skin cancer datasets contain predominantly lighter skin tones potentially leading to biased artificial intelligence (AI) models. This study aimed to analyse these datasets for skin tone bias. 

What were the aims of the seed corn project? 

The project’s aims were to perform an exploratory data analysis of open-source skin cancer datasets and evaluate potential skin tone bias resulting from the models developed with these datasets.  Assuming biases were found and time permitting, a secondary goal was to mitigate the bias using data pre-processing and modelling techniques. 

What was achieved? 

Dataset collection

The project focused on the International Skin Imaging Collaboration (https://www.isic-archive.com/) archive that contains over 20 datasets totalling over 100,000 images.  The analysis required that the images provide some indication of skin tone.  We found that only 3,623 recorded the Fitzpatrick Skin Type on a scale from 1 (lighter) to 6 (darker).  For each image, we mapped the Fitzpatrick Skin Type to light or dark skin tone.  As future work, the project began exploring tone classification techniques to expand the images considered. 

Artificial Intelligence Modelling

We then developed a typical artificial intelligence model, specifically a deep convolutional neural network, to classify whether the images are malignant (i.e. cancerous) or benign. The model was trained from 2/3 of the images and evaluated in the remaining 1/3.  Due to computational limits, the model was only trained for 50 epochs. The model’s accuracy (how many correct classifications it made of either benign or malignant tumours out of all the tumours it was evaluated on) was comparatively poor with only 82%. 

Bias Analysis

The model was then evaluated relative to light and dark skin tones.  We found that the model was better at identifying cancer in light versus dark skin tone images.  The recall/true positive rate for dark skin tones was 0.26 while for light skin tones it was 0.45.  The resulting disparate impact (a measure used to indicate if a test is biased for certain groups) was found to be 0.58, which indicates the model is potentially biased.

Future plans for the project 

The project results were limited due to the subset of images with skin tone and constrained computational resources.  Future work is to further develop the tone classifier to expand the number of labelled images. Converting colour values from images into values more closely related to skin tone and then comparing with the tone labels of the image, might help train an AI model to exclude the tumour itself when classifying skin tone of the whole image. This is important as we know that the tone of tumours themselves is often different to that of the surrounding skin.

Heat map showing where the skin tone matches the label
An example image from ISIC which had its Fitzpatrick Skin Type labelled. The light green indicates where individual pixels correspond with expected colours associated with the labelled skin type. Notice that the centre of the image, where the tumour is, does not match.

More powerful computational resources will be acquired and used to sufficiently train the model.   Future work will also employ explainable AI techniques to identify the source of the bias. 


Contact details and links 

James Pope: https://research-information.bris.ac.uk/en/persons/james-pope,

Ayush Joshi https://research-information.bris.ac.uk/en/persons/ayush-joshi,  

First Steps Towards a Crowd-Sourced Ancient Greek Encyclopaedia

JGI Seed Corn Funding Project Blog 2023/24: Naomi Scott

Passage of Ancient Greek text
A page from a 10th century manuscript of Julius Pollux’s Onomasticon

In the second century A.D., Julius Pollux, Professor of Rhetoric at the Academy in Athens, wrote the Onomasticon (‘Book of Words’), and dedicated it to the Emperor Commodus. The work sits somewhere between an encyclopaedia and a lexicon. Chapters are organised by topic, and Pollux lists appropriate words on diverse themes such as ‘The Gods’, ‘Bakery Equipment’, ‘Diseases of Dogs’, and ‘Objects Found On Top Of Tables’. Throughout his work, Pollux quotes canonical authors such as Homer, Aeschylus, and Sappho in support of what he considers correct and elegant linguistic usage. This means that in addition to providing a wealth of information on everyday life in the ancient world, the Onomasticon is also one of our best sources of quotations from otherwise lost works of ancient Greek literature.   

Despite Pollux’s obvious importance, his work has not been translated into any modern language. The vast size of the Onomasticon (10 books in total, each comprised of around 250 chapters) means that it is unwieldy even for researchers able to study the original ancient Greek text. With seed-corn funding from the Jean Golding Institute, my project ‘Crowd Sourcing Julius Pollux’s Onomasticon’ has set to work on filling this gap. Eventually, my aim is to use crowd-sourcing to produce not only a translation of the Onomasticon, thereby making it accessible to researchers in a wide variety of disciplines, but an edition of the work which is fully data-tagged, so that researchers can better navigate the text, and produce key data about it: Which ancient authors and genres are most frequently cited as sources and in what contexts; what topics are granted the most or least coverage within the text; and how are different lexical categories distributed within the encyclopaedia? Without the answers to questions such as these, any individual chapter or citation within the Onomasticon cannot be placed in the wider context of the work as a whole.  

Creating a New Digital Edition 

While a digitised version of the ancient Greek text of the Onomasticon exists, it is based on the work of Erich Bethe, whose early twentieth-century edition of Pollux removed all the chapter titles which have been used to organise the text since it was first published as a printed book in 1502. Bethe did this because he did not consider the chapter titles to be Pollux’s own. Both for the purpose of splitting the text up into manageable short chunks for translation, and for the purpose of data-tagging, I decided it was essential to reinstate the titles. Additionally, my own examination of manuscripts of the Onomasticon dating as far back as the 10th century has revealed that the chapter titles are in fact much older than first thought, and that the text as we currently have it (abridged from Pollux’s even longer original!) may even have been conceived with the chapter titles. 

The first step in producing a digital edition suitable for crowd-sourcing and data-tagging is therefore to reinsert the titles into the text. This would be an enormous undertaking if done manually. Working with a brilliant team from Bristol’s Research IT department, led by Serena Cooper, Keiran Pitts, and Mike Jones, we have set about automating this process. Ancient Greek OCR (Optical Character Recognition) software designed by Professor Bruce Robertson at the University of Mount Allison in Canada, two editions of the text were scanned — one Bethe’s chapterless version, and the other by Karl Wilhelm Dindorf, whose 1824 edition of the text includes the titles.  The next step is to use digital mapping software to combine the two texts, inserting the titles from Dindorf into the otherwise superior version of the text produced by Bethe.  

Next Steps 

Once the issue of the chapter titles has been resolved, the next step will be to create a prototype of around 20 chapters, which can then be made available to the scholarly community to begin translating and data-tagging the text. A prototype would allow us to get feedback from researchers around the world working with Pollux, and to better understand what kinds of data would be most useful to those seeking to understand the text. This feedback can then be integrated into an eventual complete edition of the text which can then be translated and data-tagged as a whole.  

Eventually, this project will not only make the Onomasticon more accessible to researchers, and help to revolutionise our understanding of this important work. A complete translation and data-tagged edition complete with chapter titles will also allow the Onomasticon to have an impact beyond the academic community. The eventual plan is to train arts professionals engaging with the ancient Greek world to use the digital edition and translation. The Onomasticon’s remarkably detailed picture of ordinary life and ordinary stuff in antiquity makes it a vital resource for anyone trying to recreate the ancient Greek world on stage, on screen, or in novels. The hope is that this project will therefore not only change the way that scholars understand the Onomasticon and its place in the history of the encyclopaedia. It can also offer artists a window onto antiquity, and through its impact on art, shape the public understanding of the ancient world.  

New Turing Liaison Officers join the JGI team

As an active member of the Turing University Network, we have appointed a Turing Liaison Manager and two Turing Liaison Academics to support and enhance the partnership between Alan Turing Institute and the University of Bristol. These roles will be focusing on increasing engagement from Turing, developing external and internal networks around data science and AI, and supporting relevant interest groups, Enrichment students and Turing Fellows at the University of Bristol.

Turing Liaison Manager, Isabelle Halton and Turing Academic Liaisons, Conor Houghton and Emmanouil Tranos, are keen to build communities around data science and AI, providing support to staff and students who want to be more involved in Turing activity.

Isabelle previously worked in the Professional Liaison Network in the Faculty of Social Sciences and Law. She has extensive experience in building relationships and networks, project and event management and streamlining activities connecting academics and external organisations.

Conor is a Reader in the School of Engineering Mathematics and Technology, interested in linguistics and the brain. Conor is a Turing Fellow and a member of the TReX, the Turing ethics committee.

Emmanouil is currently a Turing Fellow and a Professor of Quantitative Human Geography, specialising primarily on the spatial dimensions of the digital economy.


If you’re interested in becoming more involved with Turing activity or have any questions about the partnership, please email Isabelle Halton, Turing Liaison Manager via the Turing Mailbox

How Smartwatches Could Help People with Type 1 Diabetes 

JGI Seed Corn Funding Project Blog 2023/24: Miranda Armstrong

Introduction

Type 1 diabetes (T1D) requires consistent self-management, which places a large burden on those who live with it. We explored the role smartwatches could play in reducing that burden. 

Image contains photos of a continuous glucose monitor, smartwatch, closed loop algorithm and Insulin pump
Figure 1: Theoretical closed-loop system that uses smartwatch data in its algorithm. Closed-loop systems without smartwatch integration are the current state of the art of T1D technology. They begin to automate the T1D management process by using data from the eco-system of devices to predict future changes in blood glucose and change insulin dosage to counteract these changes.

Aims

The project aimed to collect and build a dataset that would allow for exploration into the potential of smartwatches in T1D management. This would include both data from the smartwatch and T1D technology the participants used, and user experience of using the smartwatch alongside their typical T1D management. To meet the aim, the following goals were set: 

  1. Collect data from participants, including from smartwatches and T1D devices, and in interviews and focus groups. 
  1. Clean, anonymise, and combine data from different sensors into a consistent format, and transcribe the interviews and focus groups. 
  1. Hold an online data challenge using a sample of the collected data to promote the dataset and highlight potential uses for it. 
  1. Release the dataset publicly to allow other researchers to use it as part of their work and therefore increase the value of the dataset. 

What was achieved

Two graphs. Top graph is Blood glucose, Insulin and Carbohydrates against Time. The bottom graph is Heart rate and steps against time
Figure 2: An example day of data from one participant, with some of the data available. The upper axis highlights the data available to current commercial closed-loop systems and the lower axis shows some smartwatch data from the same period. 

Data Collection

The project recruited 24 participants, and each were given a smartwatch or could use their own. Over six months, participants donated data from their smartwatches and type 1 diabetes (T1D) devices to create a dataset aimed at exploring the integration of smartwatch data into a closed-loop algorithm. This dataset reflects real-life conditions and participants used a range of T1D technology. Over 2000 days, the data that was donated had a high coverage from all the devices the participant used. During this time participants were involved in interviews and focus groups to discuss their opinions of the smartwatches and potential roles they could see in T1D management. A total of 62 interviews and 11 focus groups were completed across the study period. 

Data Processing

We processed a large amount of data to prepare it for public use. The smartwatch and T1D data were cleaned and anonymised (so no one involved in the study could be identified) and then organised into two formats. One was an easy-to-use dataset for researchers to test their algorithms, and the other kept the data in its original form for deeper exploration. We also transcribed and anonymised the interviews and focus groups so other researchers could analyse them to understand the participants’ experience of using the smartwatch. 

Initial Findings

Initial engagement with the interviews and focus group data has highlighted several potential uses for smartwatches in T1D management. These include as a device to display data quickly and discretely to the user, as an interface with T1D technology for easier access, and as a data source to inform management decision making around activity. There are also design implications highlighted in this analysis. These include utilising automation to provide benefit without increasing user burden, allowing customisation to accommodate the wide range of user preferences and usage patterns to promote uptake, and flexibility to allow these systems to adapt to changing user needs and ensure use of the device into the future. 

Future Plans

The data challenge and the public release of the dataset are scheduled for later this year.  We plan to run the competition from mid-September to the end of November 2024, with £1600 in prize vouchers available across entries. If you would like to hear more details about the competition, please leave your details in this form. The whole dataset will then be published after the competition of the data competition.  

Additionally, we will conduct our own analysis on the data that has been collected. This will expand our initial findings that highlight where and how a smartwatch could be used to improve T1D management. It will also test if adding smartwatch data can improve the prediction of blood glucose, by factoring in information on activity. This could be utilised in closed-loop systems (Figure 1) and would allow them to factor activity into their algorithms. For example, if the user was to go for a walk, this system could detect that activity and then predict the drop in blood glucose levels it would cause and so reduce insulin delivery to counteract this drop. Such a system would improve T1D management and reduce the burden placed on those managing it. 


Contact details

Sam James: sam.james@bristol.ac.uk 

Miranda Armstrong: Miranda.armstrong@bristol.ac.uk 

Zahraa Abdallah: zahraa.abdallah@bristol.ac.uk 

Ask JGI Student Experience Profiles: Rachael Laidlaw

Rachael Laidlaw (Ask-JGI Data Science Support 2023-24) 

I first came into contact with the Jean Golding Institute last year at The Alan Turing Institute’s annual AI UK conference in London, and then again in the early stages of the DataFace project in collaboration with Cheltenham Science Festival. This meant that before I officially joined the team back in October, I already knew what a lovely group of people I’d be getting involved with! Having nice colleagues, however, was not my only motivation for applying to be an Ask-JGI student. On top of that, I’d decided that whilst starting out in my ecological computer-vision PhD niche, I didn’t want to forget all of the statistical skills that I’d developed back in my MSc degree. Plus, it sounded really fun to keep myself on my toes by exercising my mind tackling a variety of data-oriented requests from across the university’s many departments. 

Rachael Laidlaw in centre with two JGI staff members to the left and one JGI staff member to the right pointing towards a Data pin board at the JGI stall
Rachael Laidlaw (centre), second-year PhD student in Interactive Artificial Intelligence, and other JGI staff members at the JGI stall

During the course of my academic life, I’ve taken the plunge of changing disciplines twice, moving from pure mathematics to applied statistics and then again to computer science, and I liked the idea of supporting others to potentially do the same thing as they looked to enhance their work by delving into data. Through Ask-JGI, I kept my weeks interesting by having something other than my own research to sometimes switch my focus to, and it felt very fulfilling to be able to offer useful technical advice to those who were in the same position that I myself had been in not so long ago too! I therefore got stuck in with anything and everything, from training CNNs for rainfall forecasting or performing statistical tests to compare the antibiotic resistance of different bacteria, to modelling the outcomes of university spinouts or advising on the ethical considerations and potential bias present when designing and deploying a questionnaire-based study. And, of course, by exposing myself to these problems (alongside additional outreach initiatives and showcase events), I also learned a lot along the way, both from my own exploration and from the rest of the team’s insights. 

One especially exciting query revolved around automating the process of identifying from images which particular underground printing presses had been used to produce various historical political pamphlets, based on imperfections in the script. This piqued my interest immediately as it drew parallels with my PhD project, highlighting the copious amount of uses of computer vision and how it can save us time by speeding up traditionally manual processes: from the monitoring of animal biodiversity to carrying out detective work on old written records. 

All in all, this year has broadened my horizons by giving me great consultancy-style work experience through the opportunity to share my expertise and help a wide range of researchers. I would absolutely encourage other curious PhD students to apply and see what they can both give to and gain from the role!